
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Benchmarking Derivative-Free Optimization Algorithms

Jorge J. Moré and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P1471-1207

December 2007

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357 and by a DOE
Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308.

Benchmarking Derivative-Free Optimization Algorithms

Jorge J. Moré∗ and Stefan M. Wild†

Abstract

We propose data profiles as a tool for analyzing the performance of derivative-
free optimization solvers when there are constraints on the computational budget. We
use performance and data profiles, together with a convergence test that measures
the decrease in function value, to analyze the performance of three solvers on sets
of smooth, noisy, and piecewise-smooth problems. Our results provide estimates for
the performance difference between these solvers, and show that on these problems, a
model-based solver performs better than geometry-based solvers, even for noisy and
piecewise-smooth problems.

1 Introduction

Derivative-free optimization has experienced a renewed interest over the past decade that
has encouraged a new wave of theory and algorithms. While this research includes compu-
tational experiments that compare and explore the properties of these algorithms, most of
these experiments do not provide useful information for users of derivative-free algorithms
with computationally expensive problems. In our experience, these users want solvers that
deliver the most reduction in function value within a given computational budget.

We explore benchmarking procedures for derivative-free optimization algorithms when
there is a limited computational budget. The focus of our work is the unconstrained opti-
mization problem

min {f(x) : x ∈ Rn} , (1.1)

where f : Rn → R may be noisy or non-differentiable and, in particular, in the case where
the evaluation of f is computationally expensive. These expensive optimization problems
arise in science and engineering because evaluation of the function f often requires a complex
deterministic simulation based on solving the equations (for example, nonlinear eigenvalue
problems, ordinary or partial differential equations) that describe the underlying physical
phenomena. The computational noise associated with these complex simulations means that
obtaining derivatives is difficult and unreliable. Moreover, these simulations often rely on
legacy or proprietary codes and hence must be treated as black-box functions, necessitating
a derivative-free optimization algorithm.
∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. This

work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of

the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under

Contract DE-AC02-06CH11357.
†School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853.

Research supported by a DOE Computational Science Graduate Fellowship under grant number DE-FG02-

97ER25308

1

Several comparisons have been made of derivative-free algorithms on noisy optimization
problems that arise in applications. In particular, we mention [5, 8, 10, 15, 18]. The
most ambitious work in this direction [5] is a comparison of six derivative-free optimization
algorithms on two variations of a groundwater problem specified by a simulator. In this work
algorithms are compared by their trajectories (plot of the best function value against the
number of evaluations) until the solver satisfies a convergence test based on the resolution
of the simulator.

Benchmarking derivative-free algorithms on selected applications with trajectory plots
provides useful information to users with related applications. In particular, users can find
the solver that delivers the largest reduction within a given computational budget. However,
the conclusions in these computational studies do not readily extend to other applications.

Most researchers have relied on a selection of problems from the CUTEr [6] collection of
optimization problems for their work on testing and comparing derivative-free algorithms.
Work in this direction includes [1, 10, 12, 14, 16]. The performance data gathered in these
studies is the number of function evaluations required to satisfy a convergence test when
there is a limit µf on the number of function evaluations. The convergence test is sometimes
related to the accuracy of the current iterate as an approximation to a solution, while in
other cases it is related to a parameter in the algorithm. For example, a typical convergence
test for trust region methods [1, 14, 16] requires that the trust region radius be smaller than
a given tolerance.

Users with expensive function evaluations are interested in a convergence test that mea-
sures the decrease in function value. In Section 2 we propose the convergence test

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL), (1.2)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed for
each problem as the smallest value of f obtained by any solver within a given number µf
of function evaluations. This convergence test is well suited for derivative-free optimization
because it is scale-invariant and measures the function value reduction f(x0)−f(x) achieved
by x relative to the best possible reduction f(x0)− fL.

The convergence test (1.2) was used by Marazzi and Nocedal [12] but with fL set to
an accurate estimate of f at a local minimizer obtained by a derivative-based solver. In
Section 2 we show that setting fL to an accurate estimate of f at a minimizer is not
appropriate when the evaluation of f is expensive, since no solver may be able to satisfy
(1.2) within the user’s computational budget.

We use performance profiles [3] with the convergence test (1.2) to evaluate the perfor-
mance of derivative-free solvers. Instead of using a fixed value of τ , we use τ = 10−k with
k ∈ {1, 3, 5, 7} so that a user can evaluate solver performance for different levels of accuracy.
These performance profiles are useful to users who need to choose a solver that provides a
given reduction in function value within a limit of µf function evaluations.

Previous work with performance profiles has not varied the limit µf on the number of
function evaluations and has used large values for µf . The underlying assumption has been

2

that the long-term behavior of the algorithm is of utmost importance. This assumption is
not likely to hold, however, if the evaluation of f is expensive.

Performance profiles were designed to compare solvers and thus use a performance ratio
instead of the number of function evaluations required to solve a problem. As a result,
performance profiles do not provide the percentage of problems that can be solved (for
a given tolerance τ) with a given number of function evaluations. This information is
essential to users with expensive optimization problems and thus an interest in the short-
term behavior of algorithms. On the other hand, the data profiles of Section 2 have been
designed to provide this information.

The remainder of this paper is devoted to demonstrating the use of performance and
data profiles for benchmarking derivative-free optimization solvers. Section 2 reviews the
use of performance profiles with the convergence test (1.2), and defines data profiles.

Section 3 provides a brief overview of the solvers selected to illustrate the benchmarking
process: the Nelder-Mead NMSMAX code [9], the pattern-search APPSPACK code [7], and
the model-based trust region NEWUOA code [16]. Since the emphasis of this paper is on
the benchmarking process, no attempt was made to assemble a large collection of solvers.
The selection of solvers was guided mainly by a desire to examine the performance of a
representative subset of derivative-free solvers.

Section 4 describes the benchmark problems used in the computational experiments.
We use a selection of problems from the CUTEr [6] collection for the basic set; but since the
functions f that describe the optimization problem are invariably smooth, with at least two
continuous derivatives, we augment this basic set with noisy and piecewise-smooth problems
derived from this basic set. The choice of noisy problems was guided by a desire to mimic
simulation-based optimization problems.

The benchmarking results in Section 5 show that data and performance profiles provide
complementary information that measures the strengths and weaknesses of optimization
solvers as a function of the computational budget. Data profiles are useful, in particular, to
assess the short-term behavior of the algorithms. The results obtained from the benchmark
problems of Section 4 show that the model-based solver NEWUOA performs better than
the geometry-based solvers NMSMAX and APPSPACK even for noisy and piecewise-smooth
problems. These results also provide estimates for the performance differences between
these solvers.

Standard disclaimers [3] in benchmarking studies apply to the results in Section 5. In
particular, all solvers were tested with the default options, so results may change if these
defaults are changed. In a similar vein, our results apply only to the current version of these
solvers and may change with future versions of these solvers.

2 Benchmarking Derivative-Free Optimization Solvers

Performance profiles, introduced by Dolan and Moré [3], have proved to be an important
tool for benchmarking optimization solvers. Dolan and Moré define a benchmark in terms
of a set P of benchmark problems, a set S of optimization solvers, and a convergence test

3

T . Once these components of a benchmark are defined, performance profiles can be used
to compare the performance of the solvers. In this section we first propose a convergence
test for derivative-free optimization solvers and then examine the relevance of performance
profiles for optimization problems with expensive function evaluations.

2.1 Performance Profiles

Performance profiles are defined in terms of a performance measure tp,s > 0 obtained for
each p ∈ P and s ∈ S. For example, this measure could be based on the amount of
computing time or the number of function evaluations required to satisfy the convergence
test. For any pair (p, s) of problem p and solver s, the performance ratio is defined by

rp,s =
tp,s

min{tp,s : 1 ≤ s ≤ |S|}
,

where |S| denotes the cardinality of S. Note that the best solver for a particular problem
attains the lower bound rp,s = 1. The convention rp,s = ∞ is used when solver s fails to
satisfy the convergence test on problem p.

The performance profile of a solver s ∈ S is defined as the fraction of problems where
the performance ratio is at most α, that is,

ρs(α) =
1
|P|

size
{
p ∈ P : rp,s ≤ α

}
. (2.1)

Thus, a performance profile is the probability distribution for the ratio rp,s. Performance
profiles seek to capture how well the solver performs relative to the other solvers in S on the
set of problems in P. Note, in particular, that ρs(1) is the fraction of problems for which
solver s ∈ S is the fastest and that for α sufficiently large, ρs(α) is the fraction of problems
solved by s ∈ S. Solvers with high values for ρs(α) are preferable.

Benchmarking gradient-based optimization solvers is reasonably straightforward once
the convergence test is chosen. The convergence test is invariably based on the gradient,
for example,

‖∇f(x)‖ ≤ τ‖∇f(x0)‖

for some τ > 0 and norm ‖·‖. This convergence test is augmented by a limit on the amount
of computing time or the number of function evaluations. The latter requirement is needed
to catch solvers that are not able to solve a given problem.

Benchmarking gradient-based solvers is usually done with a fixed choice of tolerance
τ that yields reasonably accurate solutions on the benchmark problems. The underlying
assumption is that the performance of the solvers will not change significantly with other
choices of the tolerance and that, in any case, users tend to be interested in solvers that
can deliver high-accuracy solutions. In derivative-free optimization, however, users are
interested in both low-accuracy and high-accuracy solutions. In practical situations, when
the evaluation of f is expensive, a low-accuracy solution is all that can be obtained within
the user’s computational budget. Moreover, in these situations, the accuracy of the data
may warrant only a low-accuracy solution.

4

Benchmarking derivative-free solvers requires a convergence test that does not depend
on the gradient. We propose to use the convergence test

f(x) ≤ fL + τ(f(x0)− fL), (2.2)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed
for each problem p ∈ P as the smallest value of f obtained by any solver within a given
number µf of function evaluations. The convergence test (2.2) can also be written as

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),

and this shows that (2.2) requires that the reduction f(x0)− f(x) achieved by x be at least
1− τ the best possible reduction f(x0)− fL.

The convergence test (2.2) was used by Elster and Neumaier [4] but with fL set to
an accurate estimate of f at a global minimizer. This test was also used by Marazzi and
Nocedal [12] but with fL set to an accurate estimate of f at a local minimizer obtained
by a derivative-based solver. Setting fL to an accurate estimate of f at a minimizer is
not appropriate when the evaluation of f is expensive because no solver may be able to
satisfy (2.2) within the user’s computational budget. Even for problems with a cheap f ,
a derivative-free solver is not likely to achieve accuracy comparable to a derivative-based
solver. On the other hand, if fL is the smallest value of f obtained by any solver, then at
least one solver will satisfy (2.2) for any τ ≥ 0.

An advantage of (2.2) is that it is invariant to the affine transformation f 7→ αf + β

where α > 0. Hence, we can assume, for example, that fL = 0 and f(x0) = 1. There
is no loss in generality in this assumption because all derivative-free solvers are invariant
to the affine transformation f 7→ αf + β. Indeed, solvers for gradient-based optimization
(unconstrained and constrained) problems are also invariant to this affine transformation.

The tolerance τ ∈ [0, 1] in (2.2) represents the percentage decrease from the starting
value f(x0). A value of τ = 0.1 represents a modest decrease, a reduction that is 90% of the
total possible, while smaller values of τ correspond to larger decreases. As τ decreases, the
accuracy of f(x) as an approximation to fL increases; the accuracy of x as an approximation
to some minimizer depends on the growth of f in a neighborhood of the minimizer. As noted,
users are interested in the performance of derivative-free solvers for both low-accuracy and
high-accuracy solutions.

The following result relates the convergence test (2.2) to convergence results for gradient-
based optimization solvers.

Theorem 2.1. Assume that f : Rn 7→ R is a strictly convex quadratic and that x∗ is the
unique minimizer of f . If fL = f(x∗), then x ∈ Rn satisfies the convergence test (2.2) if
and only if

‖∇f(x)‖∗ ≤ τ1/2 ‖∇f(x0)‖∗ (2.3)

for the norm ‖ · ‖∗ defined by
‖v‖∗ = ‖G−

1
2 v‖2,

and G is the Hessian matrix of f .

5

Proof. Since f is a quadratic, G is the Hessian matrix of f , and x∗ is the unique minimizer,

f(x) = f(x∗) + 1
2(x− x∗)TG(x− x∗).

Hence, the convergence test (2.2) holds if and only if

(x− x∗)TG(x− x∗) ≤ τ(x0 − x∗)TG(x0 − x∗),

which in terms of the square root G
1
2 is just

‖G
1
2 (x− x∗)‖22 ≤ τ‖G

1
2 (x0 − x∗)‖22.

We obtain (2.3) by noting that since x∗ is the minimizer of the quadratic f and G is the
Hessian matrix, ∇f(x) = G(x− x∗).

Other variations on Theorem 2.1 are of interest. For example, it is not difficult to show,
by using the same proof techniques, that (2.2) is also equivalent to

1
2‖∇f(x)‖2∗ ≤ τ (f(x0)− f(x∗)). (2.4)

This inequality shows, in particular, that we can expect that the accuracy of x, as measured
by the gradient norm ‖∇f(x)‖∗, to increase with the square root of f(x0)− f(x∗).

Similar estimates hold for the error in x because ∇f(x) = G(x− x∗). Thus, in view of
(2.3), the convergence test (2.2) is equivalent to

‖x− x∗‖� ≤ τ1/2 ‖x0 − x∗‖�,

where the norm ‖ · ‖� is defined by

‖v‖� = ‖G
1
2 v‖2.

In this case the accuracy of x in the ‖ · ‖� norm increases with the distance of x0 from x∗

in the ‖ · ‖� norm.
We now explore an extension of Theorem 2.1 to nonlinear functions that is valid for an

arbitrary starting point x0. The following result shows that the convergence test (2.2) is
(asymptotically) the same as the convergence test (2.4).

Lemma 2.2. If f : Rn 7→ R is twice continuously differentiable in a neighborhood of a
minimizer x∗ with ∇2f(x∗) positive definite, then

lim
x→x∗

f(x)− f(x∗)
‖∇f(x)‖2∗

= 1
2 , (2.5)

where the norm ‖ · ‖∗ is defined in Theorem 2.1 and G = ∇2f(x∗).

6

Proof. We first prove that

lim
x→x∗

‖∇2f(x∗)1/2(x− x∗)‖
‖∇f(x)‖∗

= 1. (2.6)

This result can be established by noting that since ∇2f is continuous at x∗ and ∇f(x∗) = 0,

∇f(x) = ∇2f(x∗)(x− x∗) + r1(x), r1(x) = o(‖x− x∗‖).

If λ1 is the smallest eigenvalue of ∇2f(x∗), then this relationship implies, in particular, that

‖∇f(x)‖∗ ≥ 1
2λ

1/2
1 ‖x− x

∗‖ (2.7)

for all x near x∗. This inequality and the previous relationship prove (2.6). We can now
complete the proof by noting that since ∇2f is continuous at x∗ and ∇f(x∗) = 0,

f(x) = f(x∗) + 1
2‖∇

2f(x∗)1/2(x− x∗)‖2 + r2(x), r2(x) = o(‖x− x∗‖2).

This relationship, together with (2.6) and (2.7) complete the proof.

Lemma 2.2 shows that there is a neighborhood N(x∗) of x∗ such that if x ∈ N(x∗)
satisfies the convergence test (2.2) with fL = f(x∗), then

‖∇f(x)‖∗ ≤ γ τ1/2 (f(x0)− f(x∗))1/2, (2.8)

where the constant γ is a slight overestimate of 21/2. Conversely, if γ is a slight underestimate
of 21/2, then (2.8) implies that (2.2) holds in some neighborhood of x∗. Thus, in this sense,
the gradient test (2.8) is asymptotically equivalent to (2.2) for smooth functions.

2.2 Data Profiles

We can use performance profiles with the convergence test (2.2) to benchmark optimization
solvers for problems with expensive function evaluations. In this case the performance mea-
sure tp,s is the number of function evaluations because this is assumed to be the dominant
cost per iteration. Performance profiles provide an accurate view of the relative performance
of solvers within a given number µf of function evaluations. Performance profiles do not,
however, provide sufficient information for a user with an expensive optimization problem.

Figure 2.1 shows a typical performance profile for derivative-free optimization solvers
with the convergence test (2.2) and τ = 10−2. Users generally are interested in the best
solver, and for these problems and level of accuracy, solver S1 has the best performance.
However, it is also important to pay attention to the performance difference between solvers.
For example, consider the performance profiles ρ1 and ρ2 at a performance ratio of r = 2,
ρ1(2) ≈ 80% and ρ2(2) ≈ 60%. These profiles show that solver S2 requires more than twice
the number of function evaluations as solver S1 on roughly 20% of the problems. This is a
significant difference in performance.

7

Figure 2.1: Sample performance profile (logarithmic scale) for derivative-free solvers.

The performance profiles in Figure 2.1 provide an accurate view of the performance of
derivative-free solvers for τ = 10−2. However, these results were obtained with a limit of
µf = 1300 function evaluations and thus are not directly relevant to a user for which this
limit exceeds their computational budget.

Users with expensive optimization problems are interested in the performance of solvers
as a function of the number of functions evaluations. In other words, these users are
interested in the percentage of problems that can be solved (for a given tolerance τ) with
κ function evaluations. We can obtain this information by letting tp,s be the number of
function evaluations required to satisfy (2.2) for a given tolerance τ , since then

ds(α) =
1
|P|

size
{
p ∈ P : tp,s ≤ α

}
is the percentage of problems that can be solved with α function evaluations. As usual, there
is a limit µf on the total number of function evaluations, and tp,s = ∞ if the convergence
test (2.2) is not satisfied after µf evaluations.

This definition of ds is independent of the number of variables in the problem p ∈ P.
This is not realistic because the number of function evaluations needed to satisfy a given
convergence test is likely to grow as the number of variables increases. We thus define the
data profile of a solver s ∈ S by

ds(α) =
1
|P|

size
{
p ∈ P :

tp,s
np + 1

≤ α
}
, (2.9)

where np is the number of variables in p ∈ P. With this scaling, the unit of cost is np + 1
function evaluations. This is a convenient unit that can be easily translated into function
evaluations. Another advantage of this unit of cost is that ds(κ) can then be interpreted as
the percentage of problems that can be solved with the equivalent of κ (simplex) gradient
estimates.

8

Figure 2.2: Sample data profile for derivative-free solvers.

Performance profiles (2.1) and data profiles (2.9) are probability density functions, and
thus monotone increasing, step functions with a range in [0, 1]. However, performance
profiles compare different solvers, while data profiles display the raw data. In particular,
performance profiles do not provide the number of function evaluations required to solve
any of the problems. Also note that the data profile for a given solver s ∈ S is independent
of other solvers; this is not the case for performance profiles.

Data profiles are useful to users with a specific computational budget who need to choose
a solver that is likely to reach a given reduction in function value. The user needs to express
the computational budget in terms of (simplex) gradients and examine the values of the data
profile ds for all the solvers. For example, if the user has a budget of 50 (simplex) gradients,
then the data profiles in Figure 2.2 shows that solver S2 solves more than 90% of the
problems at this level of accuracy. This information is not available from the performance
profiles in Figure 2.1.

We illustrate the differences between performance and data profiles with a synthetic case
involving two solvers. Assume that solver S1 requires k1 (simplex) gradients to solve each of
the first n1 problems, but fails to solve the remaining n2 problems. Similarly, assume that
solver S2 fails to solve the first n1 problems, but solves each of the remaining n2 problems
with k2 (simplex) gradients. Finally, assume that n1 < n2, and that k1 < k2. In this case,

ρ1(α) ≡ n1

n1 + n2
, ρ2(α) ≡ n2

n1 + n2
,

for all α ≥ 1 if the maximum number of evaluations µf allows k2 (simplex) gradients. Hence,
n1 < n2 implies that ρ1 < ρ2, and thus solver S2 is preferable. This is justifiable because
S2 solves more problems for all performance ratios. On the other hand,

d1(α) =

0, α ∈ [0, k1)

n1

n1 + n2
, α ∈ [k1,∞)

d2(α) =

0, α ∈ [0, k2)

n2

n1 + n2
, α ∈ [k2,∞)

9

In particular, 0 = d2(k) < d1(k) for all budgets of k (simplex) gradients where k ∈ [k1, k2),
and thus solver S1 is preferable under these budget constraints. This choice is appropriate
because S2 is not able to solve any problems with less than k2 (simplex) gradients.

This example illustrates an extreme case, but this can happen in practice. For example,
the data profiles in Figure 2.2 show that solver S2 outperforms S1 with a computational
budget of k (simplex) gradients where k ∈ [20, 100], though the differences are small. On
the other hand, the performance profiles in Figure 2.1 show that S1 outperforms S2.

One other connection between performance profiles and data profiles needs to be em-
phasized. The limiting value of ρs(τ) as τ →∞ is the percentage of problems that can be
solved with µf function evaluations. Thus,

ds(µf) = lim
τ→∞

ρs(τ). (2.10)

Since the limiting value of ρs can be interpreted as the reliability of the solver, we see
that (2.10) shows that the data profile ds measures the reliability of the solver (for a given
tolerance τ) as a function of the budget µf .

3 Derivative-Free Optimization Solvers

The selection of solvers S that we use to illustrate the benchmarking process was guided
by a desire to examine the performance of a representative subset of derivative-free solvers,
and thus we included both geometry-based and model-based algorithms. No attempt was
made to assemble a large collection of solvers, although we did consider more than a dozen
different solvers.

We considered only solvers that are designed to solve unconstrained optimization prob-
lems using only function values, and with an implementation that is both serial and de-
terministic. We used an implementation of the Nelder-Mead method because this method
is popular among application scientists. We also present results for the APPSPACK pattern
search method because, in a comparison of six derivative-free methods, this code performed
well in the benchmarking [5] of a groundwater problem. We used the model-based trust
region code NEWUOA because this code performed well in a recent comparison [14] of model-
based methods.

The NMSMAX code is an implementation of the Nelder-Mead method and is available
from the Matrix Computation Toolbox [9]. Other implementations of the Nelder-Mead
method exist, but this code performs well and has a reasonable default for the size of the
initial simplex. All variations on the Nelder-Mead method update an initial simplex defined
by n + 1 points via a sequence of reflections, expansions, and contractions. Not all of the
Nelder-Mead codes that we examined, however, allow the size of the initial simplex to be
specified in the calling sequence. The NMSMAX code requires an initial starting point x0, a
limit on the number of function evaluations, and the choice of a starting simplex. The user
can choose either a regular simplex or a right-angled simplex with sides along the coordinate

10

axes. We used the right-angled simplex with the default value of

∆0 = max {1, ‖x0‖∞} (3.1)

for the length of the sides. This default value performs well in our testing.
The APPSPACK code [7] is an asynchronous parallel pattern search method designed for

problems characterized by expensive function evaluations. The code can be run in serial
mode, and this is the mode used in our computational experiments. This code requires an
initial starting point x0, a limit on the number of function evaluations, the choice of scaling
for the starting pattern, and an initial step. We used unit scaling with an initial step size
∆0 defined by (3.1) so that the starting pattern was defined by the right-angled simplex
with sides of length ∆0.

The model-based trust region code NEWUOA [16, 17] uses a quadratic model obtained by
interpolation of function values at a subset of m previous trial points; the geometry of these
points is monitored and improved if necessary. We used m = 2n + 1 as recommended by
Powell [16]. The NEWUOA code requires an initial starting point x0, a limit on the number
of function evaluations, and the initial trust region radius. We used ∆0 as in (3.1) for the
initial trust region radius.

Our choice of initial settings ensures that all codes are given the same initial information.
As a result, both NMSMAX and NEWUOA evaluate the function at the vertices of the right-
angled simplex with sides of length ∆0. The APPSPACK code, however, moves off this initial
pattern as soon as a lower function value is obtained.

We effectively set all termination parameters to zero so that all codes terminate only
when the limit on the number of function evaluations is exceeded. In a few cases the
codes terminate early. This situation happens, for example, if the trust region radius (size
of the simplex or pattern) is driven to zero. Since APPSPACK requires a strictly positive
termination parameter for the final pattern size, we used 10−20 for this parameter.

4 Benchmark Problems

The benchmark problems we have selected highlight some of the properties of derivative-
free solvers as they face different classes of optimization problems. We made no attempt to
define a definitive set of benchmark problems, but these benchmark problems should serve
as a starting point for further investigations.

Our benchmark set comprises 22 of the nonlinear least squares functions defined in the
CUTEr [6] collection. Each function is defined by m components f1, . . . , fm of n variables
and a standard starting point xs.

The problems in the benchmark set P are defined by a vector (kp, np,mp, sp) of integers.
The integer kp is a reference number for the underlying function, np is the number of
variables, mp is the number of components, and sp ∈ {0, 1} defines the starting point via
x0 = 10spxs, where xs is the standard starting point for this function. The use of sp = 1 is
helpful for testing solvers from a remote starting point because the standard starting point
tends to be close to a solution for many of the problems.

11

The benchmark set P has 53 different problems. No problem is overrepresented in P
in the sense that no function kp appears more than six times. Moreover, no pair (kp, np)
appears more than twice. In all cases,

2 ≤ np ≤ 12, 2 ≤ mp ≤ 65, p = 1, . . . , 53,

with np ≤ mp. The distribution of the dimensions np among all 53 problems is shown in
Table 4.1, the median dimension being 7.

Users interested in the precise specification of the benchmark problems in P will find the
source code for evaluating the problems in P at www.mcs.anl.gov/~more/dfo. This site
also contains source code for obtaining the standard starting points xs and, a file dfo.dat

that provides the integers (kp, np,mp, sp).

Table 4.1: Distribution of problem dimensions

np 2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

We use the benchmark set P defined above to specify benchmark sets for three problem
classes: smooth, piecewise smooth, and noisy problems. The smooth problems PS are
defined by

f(x) =
m∑
k=1

fk(x)2. (4.1)

These functions are twice continuously differentiable on the level set associated with x0.
Only two functions (kp = 7, 16) have local minimizers that are not global minimizers, but
the problems defined by these functions appear only three times in PS .

The second class of problems mimics simulations that are defined by an iterative process,
for example, solving to a specified accuracy a differential equation where the differential
equation or the data depends on several parameters. These simulations are not stochastic
but do tend to produce results that are generally considered noisy. The noise in this type
of simulation is better modeled by a function with both high-frequency and low-frequency
oscillations. We thus defined the noisy problems PN by

f(x) = (1 + εfφ(x))
m∑
k=1

fk(x)2, (4.2)

with εf is the relative noise level and the noise function φ : Rn 7→ [−1, 1] is defined in terms
of the cubic Chebyshev polynomial T3 by

φ(x) = T3(φ0(x)), T3(α) = α(4α2 − 3), (4.3)

where
φ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2). (4.4)

12

Figure 4.1: Plots of the noisy quadratic (4.5) on the box [0.4, 0.6]× [0.9, 1.1]. Surface plots
(left) and level sets (right) show the oscillatory nature of f .

The function φ0 defined by (4.4) is continuous and piecewise continuously differentiable
with 2nn! regions where φ0 is continuously differentiable. The composition of φ0 with T3

eliminates the periodicity properties of φ0 and adds stationary points to φ at any point
where φ0 coincides with the stationary points (±1

2) of T3.
Figure 4.1 illustrates the properties of the noisy function (4.2) when the underlying

smooth function (εf = 0) is a quadratic function. In this case

f(x) = (1 + 1
2‖x− x0‖2)(1 + εfφ(x)), (4.5)

where x0 = [12 , 1], and noise level εf = 10−3. The graph on the left shows f on the two-
dimensional box around x0 and sides of length 1

2 , while the graph on the right shows the
contours of f . Both graphs show the oscillatory nature of f , and that f seems to have local
minimizers near the global minimizer. Evaluation of f on a mesh shows that, as expected,
the minimal value of f is 0.99906, that is, 1− εf to high accuracy.

Our interest centers on smooth and noisy problems, but we also wanted to study the
behavior of derivative-free solvers on piecewise-smooth problems. An advantage of the
benchmark problems P is that a set of piecewise-smooth problems PPS can be easily derived
by setting

f(x) =
m∑
k=1

|fk(x)|. (4.6)

These problems are continuous, but the gradient does not exist when fk(x) = 0 and
∇fk(x) 6= 0 for some index k. They are twice continuously differentiable in the regions
where all the fk do not change sign. There is no guarantee that the problems in PPS
have a unique minimizer, even if (4.1) has a unique minimizer. However, we found that
all minimizers were global for all but six functions and that these six functions had global
minimizers only, if the variables were restricted to the positive orthant. Hence, for these

13

six functions (kp = 8, 9, 13, 16, 17, 18) the piecewise-smooth problems are defined by

f(x) =
m∑
k=1

|fk(x+)|, (4.7)

where x+ = max(x, 0). This function is piecewise-smooth and agrees with the function f

defined by (4.6) for x ≥ 0.

5 Computational Experiments

We now present the results of computational experiments with the performance measures
introduced in Section 2. We used the solver set S consisting of the three algorithms detailed
in Section 3 and the three problem sets PS , PN , and PPS that correspond, respectively, to
the smooth, noisy, and piecewise-smooth benchmark sets of Section 4.

The computational results center on the short-term behavior of derivative-free algo-
rithms. We decided to investigate the behavior of the algorithms with a limit of 100 (sim-
plex) gradients. Since the problems in our benchmark sets have at most 12 variables, we
set µf = 1300 so that all solvers can use at least 100 (simplex) gradients.

Data was obtained by recording, for each problem and solver s ∈ S, the function values
generated by the solver at each trial point. All termination tolerances were set as described
in Section 3 so that solvers effectively terminate only when the limit µf on the number of
function evaluations is exceeded. In the exceptional cases where the solver terminates early
after k < µf function evaluations, we set all successive function values to f(xk). This data
is then processed to obtain a history vector h ∈ Rµf by setting

h(xk) = min {f(xj) : 0 ≤ j ≤ k} ,

so that h(xk) is the best function value produced after k function evaluations. Each solver
produces one history vector for each problem, and these history vectors are gathered into a
history array H, one column for each problem.

We present the data profiles for τ = 10−k with k ∈ {1, 3, 5, 7} because we are interested
in the short-term behavior of the algorithms as the accuracy level changes. We present
performance profiles for only τ = 10−k with k ∈ {1, 5}, but a comprehensive set of results
is provided at www.mcs.anl.gov/~more/dfo.

We comment only on the results for an accuracy level of τ = 10−5 and use the other
plots to indicate how the results change as τ changes. This accuracy level is mild compared
to classical convergence tests based on the gradient. We support this claim by noting that
(2.8) implies that if x satisfies the convergence test (2.2) near a minimizer x∗, then

‖∇f(x)‖∗ ≤ 0.45 10−2 (f(x0)− f(x∗))1/2

for τ = 10−5 and for the norm ‖ · ‖∗ defined in Theorem 2.1. If the problem is scaled so
that f(x∗) = 0 and f(x0) = 1, then

‖∇f(x)‖∗ ≤ 0.45 10−2.

14

Figure 5.1: Data profiles for the smooth problems PS show the percentage of problems
solved as a function of a computational budget of (simplex) gradients.

This test is not comparable to a gradient test that uses an unscaled norm. It suggests,
however, that for well-scaled problems, the accuracy level τ = 10−5 is mild compared to
that of classical convergence tests.

5.1 Smooth Problems

The data profiles in Figure 5.1 show that NEWUOA solves the largest percentage of problems
for all sizes of the computational budget and levels of accuracy τ . This result is perhaps not
surprising because NEWUOA is a model-based method based on a quadratic approximation
of the function, and thus could be expected to perform well on smooth problems. However,
the performance differences are noteworthy.

Performance differences between the solvers tend to be larger when the computational
budget is small. For example, with a budget of 10 (simplex) gradient and τ = 10−5,

15

Figure 5.2: Performance profiles (logarithmic scale) for the smooth problems PS .

NEWUOA solves almost 35% of the problems, while both NMSMAX and APPSPACK solve
fewer than 10% of the problems. Performance differences between NEWUOA and NMSMAX

tend to be smaller for larger computational budgets. For example, with a budget of 100
(simplex) gradients, the performance difference between NEWUOA and NMSMAX is almost
15%. On the other hand, the difference between NEWUOA and APPSPACK is about 35%.

A benefit of the data profiles is that they can be useful for allocating a computational
budget. For example, if a user is interested in getting an accuracy level of τ = 10−5 on
at least 50% of problems, the data profiles show that NEWUOA, NMSMAX, and APPSPACK

would require 20, 35, and 60 (simplex) gradients, respectively. This kind of information is
not available from performance profiles because they rely on performance ratios.

The performance profiles in Figure 5.2 are for the smooth problems with a logarithmic
scale. Performance differences are also of interest in this case. In particular, we note
that both of these plots show that NEWUOA is the fastest solver in at least 65% of the
problems, while NMSMAX and APPSPACK are each the fastest solvers on fewer than 25% of
the problems.

Both plots in Figure 5.2 show that the performance difference between solvers decreases
as the performance ratio increases. Since these figures are on a logarithmic scale, how-
ever, the decrease is slow. For example, both plots show a performance difference between
NEWUOA and NMSMAX of at least 40% when the performance ratio is two. This implies that
for at least 40% of the problems NMSMAX takes at least twice as many function evaluations
to solve these problems. When τ = 10−5, the performance difference between NEWUOA and
APPSPACK is larger, at least 50%.

16

Figure 5.3: Data profiles for the noisy problems PN show the percentage of problems solved
as a function of a computational budget of (simplex) gradients.

5.2 Noisy Problems

We now present the computational results for the noisy problems PN as defined in Section 4.
We used the noise level εF = 10−3 with the non-stochastic noise function φ defined by
(4.3,4.4). We consider this level of noise to be about right for simulations controlled by
iterative solvers because tolerances in these solvers are likely to be on the order of 10−3

or smaller. Smaller noise levels are also of interest. For example, a noise level of 10−7 is
appropriate for single-precision computations.

Arguments for a non-stochastic noise function were presented in Section 4, but here we
add that a significant advantage of using a non-stochastic noise function in benchmarking
is that this guarantees that the computational results are reproducible up to the precision
of the computations. We also note that the results obtained with a noise function φ defined
by a random number generator are similar to those obtained by the φ defined by (4.3,4.4);

17

Figure 5.4: Performance profiles (logarithmic scale) for the noisy problems PN .

results for the stochastic case can be found at www.mcs.anl.gov/~more/dfo.
The data profiles for the noisy problems, shown in Figure 5.3, are surprisingly similar

to those obtained for the smooth problems. The degree of similarity between Figures 5.1
and 5.3 is much higher for small computational budgets and the smaller values of τ . This
similarity is to be expected for geometry-based algorithms because the behavior of these
algorithm depends only on logical comparisons between function values, and not on the
actual function values. On the other hand, the behavior of NEWUOA is affected by noise
because the model is determined by interpolating points and is hence sensitive to changes in
the function values. Since NEWUOA depends on consistent function values, a performance
drop can be expected for stochastic noise of magnitudes near a demanded accuracy level.

An interesting difference between the data profiles for the smooth and noisy problems
is that solver performances for large computational budgets tend to be closer than in the
smooth case. However, NEWUOA still manages to solve the largest percentage of problems
for virtually all sizes of the computational budget and levels of accuracy τ .

Little similarity exists between the performance profiles for the noisy problems PN ,
shown in Figure 5.4 and those for the smooth problems. In general these plots show that,
as expected, noisy problems are harder to solve. NEWUOA is the fastest solver on about
65% of the noisy problems, while it was the fastest solver on about 80% of the smooth
problems. However, the performance differences between the solvers are about the same.
In particular, both plots in Figure 5.4 show a performance difference between NEWUOA

and NMSMAX of about 35% when the performance ratio is two. As we pointed out earlier,
performance differences are an estimate of the gains that can be obtained when choosing a
different solver.

18

Figure 5.5: Data profiles for the piecewise-smooth problems PPS show the percentage of
problems solved as a function of a computational budget of (simplex) gradients.

5.3 Piecewise-Smooth Problems

The computational experiments for the piecewise-smooth problems PPS measure how the
solvers perform in the presence of non-differentiable kinks. There is no guarantee of con-
vergence in this case since the current convergence theory for derivative-free optimization
algorithms (see, for example, [2, 11]) assumes that f is differentiable.

The data profiles for the piecewise-smooth problems, shown in Figure 5.5, show that
these problems are more difficult to solve than the noisy problems PN and the smooth
problems PS . In particular, we note that no solver is able to solve more than 50% of
the problems with a computational budget of 100 (simplex) gradients and τ = 10−5. By
contrast, almost 70% of the noisy problems and 90% of the smooth problems can be solved
with this budget and level of accuracy. Differences in performance are also smaller for the
piecewise smooth problems. NEWUOA solves the most problems in almost all cases, but the

19

Figure 5.6: Performance profiles (logarithmic scale) for the piecewise-smooth problems PPS .

performance difference between NEWUOA and the other solvers is smaller than in the noisy
or smooth problems.

Another interesting observation on the data profiles is that APPSPACK solves more prob-
lems than NMSMAX with τ = 10−5 for all sizes of the computational budget. This obser-
vation also holds for the data profiles with τ ≤ 10−3. This in contrast to the results for
smooth and noisy problem where NMSMAX solved more problems than APPSPACK.

The performance profiles for the piecewise-smooth problems PPS appear in Figure 5.6.
The results for τ = 10−5 show that NEWUOA, NMSMAX, and APPSPACK are the fastest
solvers on roughly 50%, 30%, and 20% of the problems, respectively. This performance
difference is maintained until the performance ratio is near r = 2. The same behavior
can be seen in the performance profile with τ = 10−1, but now the initial difference in
performance is larger, more than 40%. Also note that for τ = 10−5 NEWUOA either solves
the problem quickly or does not solve the problem within µf evaluations. On the other
hand, the reliability of both NMSMAX and APPSPACK increases with the performance ratio,
and NMSMAX eventually solves more problems than NEWUOA.

Finally, note that the performance profiles with τ = 10−5 show that NMSMAX solves
more problems than APPSPACK, while the data profiles in Figure 5.5 show that APPSPACK

solves more problems than NMSMAX for a computational budget of k (simplex) gradients
where k ∈ [25, 100]. As explained in Section 2, this reversal of solver preference can happen
when there is a constraint on the computational budget.

6 Concluding Remarks

Our interest in derivative-free methods is motivated in large part by the computationally
expensive optimization problems that arise in DOE’s SciDAC initiative. See, for example,
the description of an optimization problem [13] that arises in the modeling of nuclear fission.

20

These applications give rise to the noisy optimization problems that have been the focus of
this work.

We have used the convergence test (2.2) to define performance and data profiles for
benchmarking unconstrained derivative-free optimization solvers. This convergence test
relies only on the function values obtained by the solver and caters to users with an interest
in the short-term behavior of the solver. Data profiles provide crucial information for users
who are constrained by a computational budget and complement the measures of relative
performance shown by performance plots.

Our computational experiments show that the performance of the three solvers consid-
ered varied from problem class to problem class, with the worst performance on the set of
piecewise-smooth problems PPS . While NEWUOA generally outperformed the NMSMAX and
APPSPACK implementations in our benchmarking environment, the latter two solvers may
perform better in other environments. For example, our results did not take into account
APPSPACK’s ability to work in a parallel processing environment where concurrent function
evaluations are possible.

This work can be extended in several directions. For example, data profiles can also be
used to benchmark solvers that use derivative information. In this setting we could use a
gradient-based convergence test or the convergence test (2.2). Below we outline four other
possible future research directions.

Performance on larger problems. The computational experiments in Section 5 used
problems with at most np = 13 variables. Performance of derivative-free solvers for larger
problems is of interest, but this would require a different set of benchmark problems.

Performance on application problems. Our choice of noisy problems mimics sim-
ulations that are defined by an iterative process, for example, solving a set of differential
equations to a specified accuracy. We plan to validate this claim in future work. Perfor-
mance of derivative-free solvers on other classes of simulations is also of interest.

Performance of other derivative-free solvers. As mentioned before, our emphasis
is on the benchmarking process, and thus no attempt was made to assemble a large collection
of solvers. Users interested in the performance of other solvers can find additional results
at www.mcs.anl.gov/~more/dfo. Results for additional solvers can be added easily.

Performance with respect to input and algorithmic parameters. Our compu-
tational experiments used default input and algorithmic parameters, but we are aware that
performance can change for other choices. For example, our experience is that the perfor-
mance of NMSMAX deteriorates significantly as the initial size of the simplex decreases.

Acknowledgments

The authors are grateful to Christine Shoemaker for useful conversations throughout the
course of this work.

21

References

[1] A. R. Conn, K. Scheinberg, and P. L. Toint, A derivative free optimization
algorithm in practice, in Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, 1998.

[2] A. R. Conn, K. Scheinberg, and L. N. Vicente, Global convergence of general
derivative-free trust-region algorithms to first and second order critical points, Preprint
06-49, University of Coimbra, 2006.

[3] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance
profiles, Math. Programming, 91 (2002), pp. 201–213.

[4] C. Elster and A. Neumaier, A grid algorithm for bound constrained optimization
of noisy functions, IMA Journal of Numerical Analysis, 15 (1995), pp. 585–608.

[5] K. Fowler, J. Reese, C. Kees, J. J.E. Dennis, C. Kelley, C. Miller,

C. Audet, A. Booker, G. Couture, R. Darwin, M. Farthing, D. Finkel,

J. Gablonsky, G. Gray, and T. Kolda, A comparison of derivative-free optimiza-
tion methods for water supply and hydraulic capture community problems, preprint,
2007. Submitted to Advances in Water Resources, June 2007.

[6] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and SifDec: A constrained
and unconstrained testing environment, revisited, ACM Trans. Math. Software, 29
(2003), pp. 373–394.

[7] G. A. Gray and T. G. Kolda, Algorithm 856: APPSPACK 4.0: Asynchronous
parallel pattern search for derivative-free optimization, ACM Trans. Math. Software,
32 (2006), pp. 485–507.

[8] G. A. Gray, T. G. Kolda, K. Sale, and M. M. Young, Optimizing an empirical
scoring function for transmembrane protein structure determination, INFORMS J. on
Computing, 16 (2004), pp. 406–418.

[9] N. J. Higham, The Matrix Computation Toolbox. www.ma.man.ac.uk/~higham/

mctoolbox.

[10] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern
search for nonlinear optimization, SIAM J. Sci. Comp., 23 (2001), pp. 134–156.

[11] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New
perspectives on some classical and modern methods, SIAM Rev., 45 (2000), pp. 385–482.

[12] M. Marazzi and J. Nocedal, Wedge trust region methods for derivative free opti-
mization, Math. Programming, 91 (2002), pp. 289 – 305.

22

[13] J. J. Moré, T. Munson, and J. Sarich, Optimization in SciDAC applications,
Journal of Physics, Conference Series, 78 (2007), p. 012051.

[14] R. Oeuvray, Trust-region methods based on radial basis functions with application to
biomedical imaging, PhD thesis, EPFL, Lausanne, Switzerland, 2005.

[15] R. Oeuvray and M. Bierlaire, A new derivative-free algorithm for the medical im-
age registration problem, International Journal of Modelling and Simulation, 27 (2007),
pp. 115–124.

[16] M. J. D. Powell, The NEWUOA software for unconstrained optimization without
derivatives, in Large Scale Nonlinear Optimization, G. Di Pillo and M. Roma, eds.,
Springer, Netherlands, 2006, pp. 255–297.

[17] , Developments of NEWUOA for unconstrained minimization without derivatives,
Preprint DAMTP 2007/NA05, University of Cambridge, Cambridge, England, 2007.

[18] R. G. Regis and C. A. Shoemaker, A stochastic radial basis function method for
the global optimization of expensive functions, INFORMS Journal of Computing, 19
(2007), pp. 457–509.

The submitted manuscript has been created by the University of Chicago as

Operator of Argonne National Laboratory (“Argonne”) under Contract DE-

AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government

retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irre-

vocable worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly, by

or on behalf of the Government.

23

